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Abstract. According to standard quantum theory, the time evolution operator of a quantum system
is independent of the state of the system. One can, however, consider systems in which this is not
the case: the evolution operator may depend on the density operator itself. The presence of such
modifications of quantum theory can be tested in long-baseline oscillation experiments.

While quantum theory works remarkably well and there is no evidence to date that its validity
may be limited, there have been attempts at modifying its structure both in order to resolve some
conceptual problems or in order to establish its limits of validity. In particular, modifications of
quantum theory have been considered in order to resolve the problem of transition to classical
theory (the problem of ‘decoherence’). Briefly, it has to be ensured that if two states are
macroscopically different, then there is no definite phase relation between them and thus,
their superposition is not a physically admissible state. (Sometimes this is dubbed as the
‘problem of Schr̈odinger’s cat’, see for instance D’Espagnat [1].) It is generally thought that
decoherence is a consequence of some kind of interaction with the environment in some general
sense. For instance, it was conjectured that gravitational interactions cause decoherence once
a body is sufficiently massive [2]. However, it is also conceivable that decoherence is an
intrinsic property of quantum theory itself: after a sufficiently long time, phase relations are
lost even between microscopic states and, therefore, macroscopic ones as well (spontaneous
decoherence). Clearly, this requires a modification of the formalism of quantum theory as
we know it. Such modifications have been repeatedly advocated by a variety of authors; a
reasonably complete and up-to-date account of the problem of decoherence is given in the
book by Omǹes [3].

In this paper we consider one class of such possible modifications and suggest that one
can place limits on departures from the standard version of quantum theory in experiments
currently planned or being constructed.

The standard form of the time evolution operator of a quantum system described by its
density operator,ρ is given by the expression†

i
∂ρ

∂t
= [H, ρ] (1)

whereH is the Hamiltonian of the system. Equation (1) is linear inρ. This fact has remarkable
consequences; perhaps the most important one is that if at a particular time a system was in a

† Natural units are used: ¯h = c = 1
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pure state (i.e.ρ2(t0) = ρ(t0)), then it will remain in a pure state at all times. (Conversely, a
statistical mixture will not evolve spontaneously into a pure state either.)

It is conceivable, however, that due to the presence of some hitherto undetected small
nonlinearity in equation (1), the property we have just described is only an approximate one:
if left alone for a sufficiently long time, the system spontaneously evolves into a mixture or a
mixture contracts to some pure state.

In order to explore this possibility, we add a nonlinear term to the right-hand side of the
evolution equation, (1) and from now on investigate the evolution of a density operator obeying
the equation:

i
∂ρ

∂t
= [H, ρ] − i

ε

T

(
f (ρ)− 1

N
Tr f (ρ)

)
. (2)

HereT is some characteristic time scale. The constantε is chosen to be±1: we shall presently
see that the choice of the sign of the nonlinear term has a profound effect on the behaviour of
the system. For that reason, it is useful to exhibit a sign factor explicitly. The functionf (ρ)

governs the deviation of the evolution from standard quantum mechanics. Not having any
firm guiding principle, we shall experiment with some simple functional forms. One hopes
that by considering some simple examples, a pattern can be discovered in the behaviour of the
solutions.

Here and for the rest of this paper we restrict ourselves to state spaces of dimensionN .
A generalization to infinite-dimensional state spaces appears to be feasible; however, we have
not explored it in detail.

In writing down (2) we were guided by some physical prejudices. Three of those are
worth noting.

• We want to maintain probability conservation, therefore the term added to the right-hand
side of (1) is traceless. Consequently,

∂ Tr ρ

∂t
= 0

as in standard quantum mechanics.
• We wrote down the evolution equation in such a manner that it contains a characteristic

time scale governing the deviation from standard quantum mechanics. (Alternatively,
we could have, for example, contemplated a deformation of the Heisenberg algebra.
However, deformations of Lie algebras as discussed in the literature, contain dimensionless
parameters. We considerT a constant of Nature; there are no dimensionless constants of
Nature we know of†.)
• The term added to the evolution equation is local in time. One could have given, for

example, some memory to the system by making the evolution equation depend onρ

taken at some past moment or upon an integral ofρ, etc, however, if eventually, one wants
to construct manifestly Lorentz invariant theories, such terms are hard or impossible to
incorporate.

By making the transformation,

ρ(t) = e−iHtρ1(t) eiHt (3)

the time dependence due to the Hamiltonian is eliminated; the quantityρ1 obeys the equation

∂ρ1

∂t
+
ε

T

(
f (ρ1)− 1

N
Tr f (ρ1)

)
= 0. (4)

† Often, the fine structure constant is considered a constant of Nature. It is not, however, because its magnitude
depends on the momentum scale at which the measurement is performed.
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We notice that ‘total disorder’, i.e.

ρ1 = 1

N
(5)

is a zero off − 1/N Tr f . Whether or not it is also an attractor, depends on the functional
form of f . (One can linearize around (5) in order to determine this; however, the linearized
version gives no information about the size of the basin of attraction.) Due to the vanishing of
f − 1/N Tr f , the density matrix in equation (5) is stationary.

In order to make further progress, we now consider some simple examples. The main
technical simplification introduced is that we further restrict the dimensionality of the state
space: we takeN = 2; in this way, we can take advantage of the properties of the algebra of
quaternions (equivalently, of the Pauli matrices).

In two dimensions, a density matrix is of the form,

ρ = 1
2(1 +s · σ) (6)

whereσ denotes the Pauli matrices ands2 6 1. Clearly, sinceρ andρ1 are unitarily equivalent,
ρ1 can be written in the same form as (6), namely

ρ1 = 1
2(1 +s1 · σ).

Consider now,

Example 1.

f (ρ1) = ρ2
1. (7)

Equation (4) can be solved immediately. We have

s1(t) = s1(0) exp

(−εt
2T

)
. (8)

Clearly, onlyε > 0 makes sense from the physical point of view, sinces2
1 6 1.

Example 2.

f (ρ1) = ρ3
1. (9)

Just as in the case of equation (7), the evolution equation (4) can be solved in a closed form.
The equation reads

∂s1

∂t
+
ε

8T
s1
(
3 +s2

1

) = 0. (10)

Clearly, the direction ofs1 is constant and by taking the scalar product of equation (10) with
s1, one obtains an equation for the magnitude of the polarization†, namely

∂s2
1

∂t
= −ε

4T
s2

1

(
3 +s2

1

)
. (11)

The solution of equation (11) is

s2
1(t) = s2

1(0) e−3εt/4T
[
3 +s2

1(0)
(
1− e−3εt/4T

)]−1
. (12)

Clearly, onlyε > 0 is physically acceptable. Both examples considered so far are such that
for physically acceptable values of the parameterε, total disorder (equation (5)) is an attractor

† ‘Polarization’ is used in a generalized sense. In general, it is just a measure of the deviation from total disorder.
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and after times of the order ofT the quantum system will find itself in the neighbourhood of
the attractor.

This need not be the case, however. One can construct examples with other attractors.
It would be tempting to choose forf something likeρ(1− ρ) in analogy with the logistics
equation; presumably, such a term would drive the quantum system towards a pure state.
However, that expression has no traceless part in two dimensions. One does not want any
dimensionality to be singled out, thus some more complicated functional form has to be tried.

Example 3. Choose

f (ρ) = ρ3− ρ2. (13)

Clearly,f (ρ) = 0 for a pure state. Equation (4) can be solved in a closed form for this case
too. As before, it is sufficient to give the time evolution of the magnitude ofs1. One has

s2
1(t) =

s2
1(0)

s2
1(0) +

(
1− s2

1(0)
)

e−εt/4T
. (14)

In this case, both positive and negative values ofε lead to physically acceptable results; however,
the qualitative behaviour of the system depends crucially on the sign ofε.

(a) If ε > 0, a pure state (s2 = 1) is an attractor: if initiallys2 < 1, the system will move
towards a pure state unless initiallys = 0. Any point within the unit ball with the origin
removed is within the basin of attraction of a pure state.

(b) The situation is reversed forε < 0: any point in the interior of the unit ball (s2 < 1) is in
the basis of attraction of total disorder (equation (5)) and the surface is an unstable fixed
point.

This distinction is relevant from the point of view of experimental tests.

The possibility of testing for the presence of terms proportional to 1/T in the evolution
equation of a quantum system arises from the fact that long-baseline neutrino oscillation
experiments (MINOS, ICAROS, K2K, etc)—presently in the planning stage, or under
construction—take place on length scales of the order ofd ' 103 km; hence, they should
be sensitive to characteristic times,d = T ' 10−3 s. This is considerably larger than the time
scales involved in typical terrestrial experiments. (For comparison, a typical atomic transition
is characterized by times of the order of 1 eV−1 ' 10−15 s; the time associated with the
KS −KL mass difference is about(1m)−1 ' 2× 10−10 s.)

In principle, the test is a very simple one. We noticed that, as a consequence of
probability conservation, atotal disordercharacterized by equation (5) is always a fixed point
of equation (4), and hence of the complete density operator. From the examples considered,
it is also likely that total disorder is an attractor unless matters are specially arranged, as in
example 3. Therefore, a likely test for the presence of nonlinear terms in the evolution equation
consists of a search for spontaneous depolarization as a function of time.

In order to make matters more quantitative, let us consider neutrino oscillations with
a nonlinear term in the evolution equation discussed in example 1 above. Neutrinos are
particularly advantageous from the point of view of testing for spontaneous decoherence,
since their interaction with the environment is generally negligibly small. Thus, one may be
able to distinguish between spontaneous and environmental [2–4] decoherence.

Consider therefore a Hamiltonian of a two-flavour system, say(νµ, νe) [5], with a
Hamiltonian in the diagonal basis given as

H = E1 +E2

2
+
E1− E2

2
σ3 (15)
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and a mixing matrix,

U = eiθσ2. (16)

At momenta much higher than the rest masses of the neutrinos, the energies are given by the
expressions

Ei ≈ p +
m2
i

2p
(i = 1, 2). (17)

The density matrix in the flavour basis at production is given by

ρ(0) = 1
2(1 + s3(0) σ3). (18)

The value ofs3(0) in equation (18) equals±1, depending on whetherνµ or νe is produced.
Using the preceding equations and equation (8), one readily obtains the density matrix at time
t :

ρ(t) = 1
2 + 1

2s3(0) e−t/T σ3
(

cos2 φ + sin2 φ cos 4θ
)

+ 1
2s3(0) e−t/T sin2 φ(−σ1 + σ2),

(19)

where

φ = 1m2t

4p
.

(In the limit of T → ∞, equation (19), of course, reproduces the standard result.) Similar
expressions hold whenever total disorder is an attractor, as in the second example discussed
above: in all such cases, the signature for a departure from standard quantum mechanics is a
damping of the polarization.

Example 3 deserves special attention: the evolution equation has a fixed point ats2 = 1.
It is generally assumed that weak interactions produce neutrinos of a definite flavour, i.e. in
a pure state. If the fixed point in example 3 is a stable one, one has virtually no chance of
observing a deviation from standard quantum theory in a neutrino oscillation experiment, even
though the evolution equation of the density matrix contains nonlinear terms. Even if the fixed
point is unstable, one needs environmental perturbations in order to drive the neutrino away
from a pure state: the relevant Lyapunov exponent may be too small to make the presence
of a nonlinear term in the evolution equation observable. The lesson to be learnt from this
example is that even though there may be deviations from standard quantum theory present in
the evolution equation of the density operator, circumstances may conspire to effectively hide
that deviation from experimental scrutiny.

A final remark is in order in this context. In less than a decade or so, there will be
experimental data available from the long-baseline neutrino oscillation experiments mentioned
above.

As suggested by the preceding discussion, results obtained from those experiments may
provide a useful testing ground for the basic principles of quantum mechanics. However, in
order to interpret the data from the point of view of testing quantum mechanics itself, care has
to be taken in order to:

• Properly take environmental effects (flavour oscillations in a medium, beam damping in
transit from the accelerator to the detector, etc) into account.
• In addition, one has to analyse plausible models of deviation from ‘orthodox’ quantum

mechanics. We presentedsome modelsdescribing deviations from standard quantum
theory. However, a general analysis of the robustness of such models is still missing. (We
have, apparently, found one feature which appears to be a generic one: nonlinear quantum
evolution equations appear to prefer ‘chaos’ as the final state of a quantum system.)
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Further study is needed in order to establish whether or not the feature discovered here is a
generic one, or merely a property of some specific models. One should note, in particular, that
the classification of systems of nonlinear evolution equations is a difficult subject and it is still
far from being completely understood.

To summarize, long-baseline neutrino oscillation experiments are likely to provide an
environment for testing the validity of standard quantum theory, due to the unusually long
distances involved in such experiments. From the examples considered here, it appears that,
if nonlinear terms are present in the evolution equation for the density matrix, they are likely
to lead to spontaneous decoherence. Nevertheless, some caution is needed: there may be
situations in which the presence of deviations from standard quantum theory is hidden from
observation in certain experiments.
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[2] Károlyh́azy F 1966Nuovo Cimento42390
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